УДК 624.21.014.2

М. Р. ТИМОФЕЕВ (ООО «НИЛ ТРАНСМОСТ», Пермь, Россия)

ПОВЕДЕНИЕ СТЕНОК КОРОБЧАТОГО ПРОЛЕТНОГО СТРОЕНИЯ МОСТА В ПРОЦЕССЕ НАДВИЖКИ

В работе представлены результаты наблюдений за поведением погибов стенок неразрезного пролетного строения коробчатого сечения длиной 964 м моста через р. Каму в г. Перми в процессе его продольной надвижки.

Ключевые слова: толщина стенки, погибь, продольная надвижка, амплитуда, пролетное строение, ребро жесткости

При проведении работ по инженерному сопровождению строительства второй очереди моста через р. Каму в г. Перми (проект мостового перехода разработан ОАО «Гипротрансмост», проект надвижки руслового пролетного строения – ОАО «Институт Гипростроймост», генподрядчик строительства – ЗАО «Уралмостострой» Мостоотряд 123, завод-изготовитель металлоконструкций – ЗАО «Курганстальмост») на этапах сборки и надвижки пролетного строения (ПС) осуществлялся сбор данных о параметрах начальных погибей вертикальных стенок коробчатого сечения ПС и изменениях погибей в процессе надвижки.

Цель работы – анализ влияния погибей на напряженно-деформированное состояние участков ПС, расположенных в зоне влияния накаточных устройств, и прогноз прогибов консольных свесов плетей ПС, надвигаемых с двух сторон моста с их замыканием навесу (без промежуточной опоры).

Неразрезное пролетное строение запроектировано по схеме (93,7+126+126+126+147+ +126+126+93,7) м. Поперечное сечение приведено на рис. 1.

🗁 - точка измерения амплитуды погиби стенки

Рис. 1. Поперечное сечение пролетного строения и места измерения амплитуд погибей

Монтаж ПС осуществлялся методом конвейерно-тыловой сборки одновременно с двух берегов. Длина левобережной плети – 546,2 м, правобережной – 420,2 м. Замыкание пролетного строения осуществлялось в середине пролета длиной 147 м.

Монтаж выполнялся в период с августа 2006 г. по май 2008 г., в т.ч. надвижка – с сентября 2006 г. по май 2007 г.

Результаты анализа начальных погибей

Форма погибей определялась выборочно в нескольких панелях ПС.

Амплитуды погибей измерялись (см. рис. 1): в панелях с дополнительными короткими вертикальными ребрами жесткости (ВРЖ) – посередине верхнего яруса стенки, в панелях без дополнительных ВРЖ – в двух точках по высоте стенки. Измерения выполнялись штангенциркулем с использованием специально изготовленного металлического шаблона. Значения амплитуд наносились на схему ПС (пример од-

ного из промеров на блоке № 3 правобережной плети показан на рис. 2).

Рис.2. Результаты измерения амплитуд погибей, нанесенные на схему блока

В общей сложности было исследовано 1276 панелей стенок шириной 1,5 м, в т. ч. 255 панелей без коротких ВРЖ.

Наиболее подробно, практически пошагово, исследовались блоки Б1-Б4 (длиной по 21 м) обеих плетей с целью получения информации, необходимой для последующего прогноза ситуации к моменту замыкания плетей ПС навесу. Кроме того, выполнялись измерения погибей блоков Б5-Б8 на отдельных промежуточных этапах надвижки.

Амплитуды начальных погибей f_0 измерялись во всех панелях. Они группировались в зависимости от толщины стенки t_w и знака по-

гиби. Определялись безразмерные параметры $e_0 = f_0/t_w$ с учетом знака f_0 (здесь и далее $f_j > 0$ – при погиби, обращенной внутрь короба; $f_j < 0$ – при погиби, обращенной наружу). Значения e_0 объединялись в группы с шагом 0,1 (при $/e_0/<0,001$ условно принято $e_0 = 0$) и строились кривые распределения $e_0(n)$, где n – значение повторяемости e_0 в долях единицы.

Распределение начальных относительных амплитуд $e_0 = f_0 / t_w$ представлено на рис. 3 и 4.

Рис.3. Распределение начальных амплитуд верхних участков стенок

Рис.4. Распределение начальных амплитуд нижних участков стенок

Для верхних частей стенок при $t_w = 16$ мм и 20 мм плотность вероятности распределения $e_0(n)$ близка к нормальному распределению. С уменьшением толщины стенки сохраняется некоторое подобие нормальному распределению с большим количеством локальных пиков, при этом существенно увеличиваются асимметрия или квадратичное отклонение.

Для нижних частей стенок при всех исследованных толщинах (12, 14, 16 мм) распределение $e_0(n)$ близко к нормальному.

В табл. 1 приведено распределение начальных погибей по их направлению внутрь или наружу короба. Как видно, погиби преимущественно направлены внутрь короба, т.е. к центру «кривизны» оболочки.

Также из табл. 1 видно, что на верхних участках стенок с уменьшением толщины возрастает доля стенок с начальными погибями. В то же время не выявлена зависимость между толщиной стенки и долей ненулевых амплитуд погибей нижних участков стенок.

Что же касается e_0 , то на всех участках стенок прослеживается зависимость: меньшим толщинам стенок соответствуют большие значения e_0 . Так диапазон e_0 верхних участков составляет при $t_w = 12$ мм – от –0,833 до 1,042; при $t_w = 14$ мм – от –0,357 до 0,643; при $t_w = 16$ мм – от –0,325 до 0,375; при $t_w = 20$ мм – от –0,05 до 0,14. То же, нижних участков: при $t_w = 12$ мм – от –0,42 до 0,42; при $t_w = 14$ мм –

от -0,21 до 0,29; при *t_w* = 16 мм - от -0,25 до 0,156.

Таблица 1

Распределение начальных погибей f_0 по их направлениям

Толщина стенки <i>t_w</i> , мм	f ₀ < 0 %	f ₀ = 0 %	f ₀ > 0 %
Верхние участки стенок			
12	16,67	10,32	73,02
14	4,25	20,33	75,42
16	1,86	29,19	68,94
20	2,33	34,88	62,79
Нижние участки стенок			
12	8,97	66,67	24,36
14	8,40	59,66	31,93
16	10,34	70,69	18,97

Примечание: $f_0 > 0$ – при погиби, обращенной внутрь короба; $f_0 < 0$ – при погиби, обращенной наружу.

Характер изменения погиби в процессе надвижки

В процессе надвижки отмечено подобие формы погиби стенки на i-м этапе ϖ форме начальной погиби ϖ_0 . На основании этого вы-

полнялись измерения только амплитуд полного прогиба f.

Амплитуда полного прогиба f участка стенки на i-ом этапе надвижки есть сумма начальной f_0 и дополнительной f_a амплитуд. В свою очередь, дополнительная амплитуда f_a состоит из двух частей: f_1 – условно остаточной (оставшейся к моменту завершения монтажа) и f_2 – условно упругой, определяемой как $f_2 = f - (f_0 + f_1)$. В соответствии с этим вычислялись безразмерные параметры $e_i = f_i / t_w$.

Измерения амплитуд проводились на блоках Б1-Б8.

На величину амплитуды влияло положение сечения в момент измерения с соответствующим ему напряженно-деформированным состоянием (НДС) стенки. Максимальные амплитуды фиксировались на промежуточных этапах надвижки. В положении сечения, соответствующем проектному, амплитуды уменьшались.

Поскольку определение начальных напряжений вызывает затруднения, они, как обычно, приняты пренебрежимо малыми.

Диапазон максимальных зафиксированных относительных суммарных амплитуд $e = e_0 + e_a$ в процессе монтажа составил:

на верхних участках стенок (в т.ч. стенок без дополнительных ВРЖ):

- $t_w = 14$ мм - от -0,29 до 0,54; превышение диапазона e_0 (-0,26...0,36) составляет от - 11,5 % до 50 %;

- $t_w = 16$ - от -0,33 до 0,44; превышение диапазона e_0 (-0,33...0,31) составляет от -0 % до 33,3 %;

- $t_w = 20$ мм - от -0,05 до 0,20; превышение диапазона e_0 (-0,05...0,14) составляет от -0 % до 42,9 %;

- на нижних участках стенок:

- $t_w = 14$ мм - от -0,14 до 0,30; превышение диапазона e_0 (-0,09...0,29) составляет от -55,5 % до 3,4 %;

- $t_w = 16$ мм - от -0,13 до 0,13; превышение диапазона e_0 (-0,08...0,11) составляет от -62,5 % до 18,2 %.

Таким образом, с увеличением толщины стенки диапазон максимальных относительных амплитуд е уменьшается. Отклонение амплитуды e от начальной e_0 для верхних участков стенки уменьшается с увеличением толщины

стенки, а для нижних участков стенок, наоборот, увеличивается.

При этом были зафиксированы панели, в которых максимальная амплитуда стала меньше начальной, т.е. в процессе надвижки создалось такое НДС, что погибь, сформировавшаяся к моменту изготовления конструкции, уменьшилась. Количество таких панелей для верхних участков стенок составило: при $t_w = 14 \text{ mm} - 4.8 \%, \quad t_w = 16 \text{ mm} - 8.3 \%,$ $t_w = 20$ мм – 27,3 %. То же, для нижних участков: при t_w = 14 мм - 13,7 % и t_w = 16 мм -5,6 %. Как видно, с увеличением толщины стенки возрастает доля верхних участков стенок, погиби которых в процессе надвижки «выпрямились». В то же время для нижних участков отмечена обратная зависимость.

Диапазон условно остаточных относительных прогибов e_1 для верхних участков стенок с толщинами 14, 16 и 20 мм составляет соответственно: -0,14...0,39; -0,14...0,23; -0,05...0,10. То же, для нижних участков стенок с толщинами 14 и 16мм: -0,29...0,14; -0,11...0,08.

Видно, что стенкам с меньшей толщиной отвечают большие остаточные относительные отклонения.

Доля стенок, получивших в процессе монтажа условно остаточные прогибы *e*₁, составила (к таковым отнесены также участки, где произошло «выпрямление» погибей):

на верхних участках:

- t_w = 14 мм без начальных погибей –
53,85 %; с начальными погибями – 90,83 %;

- t_w = 16 мм без начальных погибей – 30,00 %; с начальными погибями – 81,82 %;

- t_w = 20 мм без начальных погибей –
66,67 %; с начальными погибями – 89,66 %;

– на нижних участках:

- t_w = 14 мм без начальных погибей –
23,19 %; с начальными погибями – 92,68 %;

- t_w = 16 мм без начальных погибей –
9,38 %; с начальными погибями – 100 %.

Из приведенных данных следует, что доля стенок, получивших в процессе надвижки условно остаточные прогибы, значительно выше на участках с начальными погибями. При этом развитие погибей на верхних участках без начальных погибей происходило только внутрь короба. То же на нижних участках при $t_w = 14$ мм – в обе стороны, а при $t_w = 16$ мм – только наружу короба.

То обстоятельство, что не все стенки получили остаточные прогибы, объясняется сложившимся к моменту начала измерений напряженным состоянием стенок.

Диапазон условно упругих относительных прогибов *e*₂ составил:

- на верхних участках стенок:

- для $t_w = 14$ мм - от 0 до 0,21 (диапазон e_0 от -0,26 до 0,36); ненулевые значения e_2 от-мечены в 45,21 %;

- для $t_w = 16$ мм – от –0,13 до 0,14 (диапазон e_0 от –0,33 до 0,31); ненулевые значения e_2 отмечены в 25,59%;

- для $t_w = 20$ мм - от 0 до 0,05 (диапазон e_0 от -0,05 до 0,14); ненулевые значения e_2 отмечены в 22,73 %;

– на нижних участках стенок:

- для $t_w = 14$ мм - от -0,14 до 0,36 (диапазон e_0 от -0,09 до 0,29); ненулевые значения e_2 отмечены в 35,78 %;

- для $t_w = 16$ мм - от -0,06 до 0,13 (диапазон e_0 от -0,08 до 0,11); ненулевые значения e_2 отмечены в 33,33 %.

Видно, что на верхних участках стенок диапазон условно упругих деформаций меньше диапазона начальных. При этом с увеличением толщины снижается доля стенок с упругими деформациями e_2 . В то же время на нижних участках зафиксированы значения e_2 , превышающие e_0 , а влияние толщины на долю стенок с деформациями e_2 не отмечено.

В стенках блоков Б1, Б2 с $t_w = 14$ мм без коротких ВРЖ не прослеживается однозначная связь между значениями прогибов, соответствующих верхним и нижним частям стенки. Местами при увеличении верхней погиби уменьшается нижняя, местами при увеличении верхней увеличивается и нижняя. При этом в любом случае изменения амплитуды нижней погиби, преимущественно, малы и составляют около 0,04 толщины стенки.

Влияние коротких ВРЖ на начальные погиби верхних участков не выявлено. Зато в процессе надвижки эти ребра оказывали существенное влияние на уменьшение величины амплитуды.

Так, максимальные амплитуды с величиной $e \ge \pm 0,2$ зафиксированы в 87 панелях, из которых 44 (50,57 %) не имеют коротких ВРЖ, в то время как при $e < \pm 0,2$ из 59-ти панелей стенки

дополнительно не подкреплены в 10-ти (16,95 %). То же, при $e \ge \pm 0,1 - 51$ панель (42,86 %) из 119, а при $e < \pm 0,1 -$ из 27 панелей – 3 (11,11 %).

Условно остаточные деформации $e_1 \ge \pm 0,2$ отмечены в 23 панелях, из которых 17 (73,91 %) не имеют дополнительных ВРЖ, в то время как при $e_1 < \pm 0,2$ из 123 панелей стенки не подкреплены в 37 (30,08 %). То же, при $e_1 \ge \pm 0,1 - 39$ (63,94 %) из 61 панели, а при $e_1 < \pm 0,1 -$ из 85 панелей – 15 (17,65 %).

Из 80 панелей без условно упругих деформаций e_2 не имели коротких ВРЖ 53 панели (66,25 %). Из 66 панелей, где такие деформации зафиксированы, не имела подкрепления только одна панель (1,52 %).

Анализ допускаемых погибей по СТО-ГК «Трансстрой» 012-2007

В СТО-ГК «Трансстрой» 012-2007 «Стальные конструкции мостов. Заводское изготовление» в табл. 37 приведены допускаемые отклонения геометрической формы элементов. В п.14 приведены допуски по «выпучиванию стенки балок и коробок при свободной высоте стенки h > (h - высота стенки в свету между поясами или между поясом и продольным ребром жесткости). В частности, допуски для промежуточных панелей стенки (остальные допуски относятся к участкам конца стенок у монтажных стыков или на свободном конце):

 для балок и коробок с поперечными ребрами жесткости – 0,006*h*;

– для балок без поперечных ребер жест-кости – 0,003*h*.

Указанные допуски при переходе в 2007 г. от СТП 012-2000 к СТО-ГК «Трансстрой» 012-2007 не были изменены (ужесточение допусков коснулось только участков стенок у монтажных соединений).

В СТО-ГК допуски заданы безотносительно к толщине стенки. Не приведены допуски для случаев устройства поперечных ребер жесткости не на всю высоту (как в рассматриваемой нами конструкции), а также для стенок с односторонними продольными ребрами.

В нашем случае допуск в соответствии с СТО-ГК для верхних участков стенок (участок от симметричных продольных ребер, к которым крепится поперечная балка плиты, до наружного продольного ребра, расположенного, примерно, посередине оставшейся высоты) при h = 1426 мм составляет $\Delta = 8,56$ мм. В указанные допуски полностью попали начальные погиби для стенок толщиной 16 мм ($f_0 < 6$ мм) и 20 мм ($f_0 < 2,8$ мм), а также практически полностью (кроме 0,3 %, где $f_0 = 9$ мм) участки стенок толщиной 14 мм ($f_0 < 8$ мм). Для стенок толщиной 12 мм за пределами допусков оказалось 11,5 % элементов ($f_0 < 12,5$ мм).

Аналогично для нижних участков стенок (между наружными продольными ребрами) при h = 866 мм имеем $\Delta = 5,20$ мм. За пределы этого допуска не вышли начальные погиби стенок при всех толщинах: 12 мм ($f_0 < 5$ мм), 14 мм ($f_0 < 4$ мм), 16 мм ($f_0 < 2,5$ мм).

Заключение

По результатам анализа данных съемки погибей в процессе монтажа пролетного строения можно сделать следующие выводы:

 влияние температуры окружающей среды на амплитуду погиби не зафиксировано;

 амплитуды начальных погибей, связанные с технологией прокатки листовой стали и изготовления блоков ПС, существенно зависят от толщины стенки и возрастают с ее уменьшением; наличие вертикальных ребер жесткости, установленных не на всю высоту стенки, не оказывает влияния на начальную амплитуду погиби верхней (неподкрепленной) части стенки; при этом ребра оказывают существенное влияние на развитие погибей в процессе надвижки пролетного строения;

 толщина стенки является определяющим фактором изменения прогибов стенки, образующихся при надвижке;

 допускаемые погиби при изготовлении конструкций должны быть заданы в зависимости от отношения толщины стенки к ее условной свободной высоте;

 рекомендуемая минимальная толщина стенки сечений пролетного строения, монтируемого методом продольной надвижки, должна составлять 16 мм.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

 СНиП 3.06.07-86 Мосты и трубы. Правила обследований и испытаний [Текст] / Госстрой СССР. – Введ. 1987-01-07. – М.: ЦИТП Госстроя СССР, 1988. – 40 с.

Поступила в редколлегию 31.07.2012. Принята к печати 13.08.2012.

М. Р. ТИМОФІЄВ (ООО «НДЛ ТРАНСМІСТ», Перм, Росія)

ПОВЕДІНКА СТІНОК КОРОБЧАТОВОЇ ПРОГОНОВОЇ БУДОВИ МОСТУ У ПРОЦЕСІ НАСУВАННЯ

В роботі представлені результати спостережень за поведінкою погинів стінок нерозрізної прогонової будови коробчатого перерізу довжиною 964 м моста через р. Каму в м. Пермі у процесі його поздовжнього насування.

Ключові слова: товщина стінки, погин, поздовжнє насування, амплітуда, прогонова будова, ребро жорсткості

M. TIMOFEEV (NIL TRANSMOST Ltd, Perm, Russia)

BEHAVIOR OF WEBS OF BOX-GIRDER SPAN DURING LAUNCHING

The results of observation on the behavior of web cambers of continuous box girder superstructure 964 m long of Kama Bridge at city Perm during longitudinal launching are presented.

Keywords: web thickness, camber, longitudinal launching, amplitude, superstructure, stiffener